MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbied2 Unicode version

Theorem csbied2 3429
Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
csbied2.1
csbied2.2
csbied2.3
Assertion
Ref Expression
csbied2
Distinct variable groups:   ,   ,   ,

Proof of Theorem csbied2
StepHypRef Expression
1 csbied2.1 . 2
2 id 22 . . . 4
3 csbied2.2 . . . 4
42, 3sylan9eqr 2517 . . 3
5 csbied2.3 . . 3
64, 5syldan 470 . 2
71, 6csbied 3428 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\wa 369  =wceq 1370  e.wcel 1758  [_csb 3401
This theorem is referenced by:  prdsval  14552  cidfval  14773  monfval  14830  idfuval  14945  isnat  15016  fucco  15031  catcval  15123  xpcval  15146  1stfval  15160  2ndfval  15163  prfval  15168  evlf2  15187  curfval  15192  hofval  15221  ipoval  15483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-v 3083  df-sbc 3298  df-csb 3402
  Copyright terms: Public domain W3C validator