![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > csbif | Unicode version |
Description: Distribute proper substitution through the conditional operator. (Contributed by NM, 24-Feb-2013.) (Revised by NM, 19-Aug-2018.) |
Ref | Expression |
---|---|
csbif |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1 3437 | . . . 4 | |
2 | dfsbcq2 3330 | . . . . 5 | |
3 | csbeq1 3437 | . . . . 5 | |
4 | csbeq1 3437 | . . . . 5 | |
5 | 2, 3, 4 | ifbieq12d 3968 | . . . 4 |
6 | 1, 5 | eqeq12d 2479 | . . 3 |
7 | vex 3112 | . . . 4 | |
8 | nfs1v 2181 | . . . . 5 | |
9 | nfcsb1v 3450 | . . . . 5 | |
10 | nfcsb1v 3450 | . . . . 5 | |
11 | 8, 9, 10 | nfif 3970 | . . . 4 |
12 | sbequ12 1992 | . . . . 5 | |
13 | csbeq1a 3443 | . . . . 5 | |
14 | csbeq1a 3443 | . . . . 5 | |
15 | 12, 13, 14 | ifbieq12d 3968 | . . . 4 |
16 | 7, 11, 15 | csbief 3459 | . . 3 |
17 | 6, 16 | vtoclg 3167 | . 2 |
18 | csbprc 3821 | . . 3 | |
19 | csbprc 3821 | . . . . 5 | |
20 | csbprc 3821 | . . . . 5 | |
21 | 19, 20 | ifeq12d 3961 | . . . 4 |
22 | ifid 3978 | . . . 4 | |
23 | 21, 22 | syl6req 2515 | . . 3 |
24 | 18, 23 | eqtrd 2498 | . 2 |
25 | 17, 24 | pm2.61i 164 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 = wceq 1395
[ wsb 1739 e. wcel 1818 cvv 3109
[. wsbc 3327 [_ csb 3434 c0 3784 if cif 3941 |
This theorem is referenced by: fvmptnn04if 19350 cdlemk40 36643 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-fal 1401 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 |
Copyright terms: Public domain | W3C validator |