Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbiotagOLD Unicode version

Theorem csbiotagOLD 5586
 Description: Class substitution within a description binder. (Contributed by Scott Fenton, 6-Oct-2017.) Obsolete as of 23-Aug-2018. Use csbiota 5585 instead. (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
csbiotagOLD
Distinct variable groups:   ,   ,

Proof of Theorem csbiotagOLD
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3437 . . 3
2 dfsbcq2 3330 . . . 4
32iotabidv 5577 . . 3
41, 3eqeq12d 2479 . 2
5 vex 3112 . . 3
6 nfs1v 2181 . . . 4
76nfiota 5560 . . 3
8 sbequ12 1992 . . . 4
98iotabidv 5577 . . 3
105, 7, 9csbief 3459 . 2
114, 10vtoclg 3167 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  =wceq 1395  [wsb 1739  e.wcel 1818  [.wsbc 3327  [_csb 3434  iotacio 5554 This theorem is referenced by:  csbfv12gOLD  5907 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-rex 2813  df-v 3111  df-sbc 3328  df-csb 3435  df-sn 4030  df-uni 4250  df-iota 5556
 Copyright terms: Public domain W3C validator