![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > csbiotagOLD | Unicode version |
Description: Class substitution within a description binder. (Contributed by Scott Fenton, 6-Oct-2017.) Obsolete as of 23-Aug-2018. Use csbiota 5585 instead. (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
csbiotagOLD |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1 3437 | . . 3 | |
2 | dfsbcq2 3330 | . . . 4 | |
3 | 2 | iotabidv 5577 | . . 3 |
4 | 1, 3 | eqeq12d 2479 | . 2 |
5 | vex 3112 | . . 3 | |
6 | nfs1v 2181 | . . . 4 | |
7 | 6 | nfiota 5560 | . . 3 |
8 | sbequ12 1992 | . . . 4 | |
9 | 8 | iotabidv 5577 | . . 3 |
10 | 5, 7, 9 | csbief 3459 | . 2 |
11 | 4, 10 | vtoclg 3167 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 = wceq 1395
[ wsb 1739 e. wcel 1818 [. wsbc 3327
[_ csb 3434 iota cio 5554 |
This theorem is referenced by: csbfv12gOLD 5907 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-v 3111 df-sbc 3328 df-csb 3435 df-sn 4030 df-uni 4250 df-iota 5556 |
Copyright terms: Public domain | W3C validator |