![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > csbriotagOLD | Unicode version |
Description: Interchange class substitution and restricted description binder. (Contributed by NM, 24-Feb-2013.) Obsolete as of 2-Sep-2018. Use csbriota 6269 instead. (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
csbriotagOLD |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbriota 6269 | . 2 | |
2 | 1 | a1i 11 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 = wceq 1395
e. wcel 1818 [. wsbc 3327 [_ csb 3434
iota_ crio 6256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-fal 1401 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-in 3482 df-ss 3489 df-nul 3785 df-sn 4030 df-uni 4250 df-iota 5556 df-riota 6257 |
Copyright terms: Public domain | W3C validator |