Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbriotagOLD Unicode version

Theorem csbriotagOLD 6270
 Description: Interchange class substitution and restricted description binder. (Contributed by NM, 24-Feb-2013.) Obsolete as of 2-Sep-2018. Use csbriota 6269 instead. (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
csbriotagOLD
Distinct variable groups:   ,   ,   ,

Proof of Theorem csbriotagOLD
StepHypRef Expression
1 csbriota 6269 . 2
21a1i 11 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  =wceq 1395  e.wcel 1818  [.wsbc 3327  [_csb 3434  iota_crio 6256 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-fal 1401  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-v 3111  df-sbc 3328  df-csb 3435  df-dif 3478  df-in 3482  df-ss 3489  df-nul 3785  df-sn 4030  df-uni 4250  df-iota 5556  df-riota 6257
 Copyright terms: Public domain W3C validator