![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > csbxpgOLD | Unicode version |
Description: Distribute proper substitution through the Cartesian product of two classes. (Contributed by Alan Sare, 10-Nov-2012.) Obsolete as of 23-Aug-2018. Use csbrn 5473 instead. (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
csbxpgOLD |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbabgOLD 3856 | . . 3 | |
2 | sbcexgOLD 3382 | . . . . 5 | |
3 | sbcexgOLD 3382 | . . . . . . 7 | |
4 | sbcangOLD 3371 | . . . . . . . . 9 | |
5 | sbcg 3401 | . . . . . . . . . 10 | |
6 | sbcangOLD 3371 | . . . . . . . . . . 11 | |
7 | sbcel2gOLD 3832 | . . . . . . . . . . . 12 | |
8 | sbcel2gOLD 3832 | . . . . . . . . . . . 12 | |
9 | 7, 8 | anbi12d 710 | . . . . . . . . . . 11 |
10 | 6, 9 | bitrd 253 | . . . . . . . . . 10 |
11 | 5, 10 | anbi12d 710 | . . . . . . . . 9 |
12 | 4, 11 | bitrd 253 | . . . . . . . 8 |
13 | 12 | exbidv 1714 | . . . . . . 7 |
14 | 3, 13 | bitrd 253 | . . . . . 6 |
15 | 14 | exbidv 1714 | . . . . 5 |
16 | 2, 15 | bitrd 253 | . . . 4 |
17 | 16 | abbidv 2593 | . . 3 |
18 | 1, 17 | eqtrd 2498 | . 2 |
19 | df-xp 5010 | . . . 4 | |
20 | df-opab 4511 | . . . 4 | |
21 | 19, 20 | eqtri 2486 | . . 3 |
22 | 21 | csbeq2i 3836 | . 2 |
23 | df-xp 5010 | . . 3 | |
24 | df-opab 4511 | . . 3 | |
25 | 23, 24 | eqtri 2486 | . 2 |
26 | 18, 22, 25 | 3eqtr4g 2523 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 E. wex 1612 e. wcel 1818
{ cab 2442 [. wsbc 3327 [_ csb 3434
<. cop 4035 { copab 4509 X. cxp 5002 |
This theorem is referenced by: csbresgOLD 5282 csbresgVD 33695 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-sbc 3328 df-csb 3435 df-opab 4511 df-xp 5010 |
Copyright terms: Public domain | W3C validator |