![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > cshwcshid | Unicode version |
Description: A cyclically shifted word can be reconstructed by cyclically shifting it again. Lemma for erclwwlktr 24815 and erclwwlkntr 24827. (Contributed by AV, 8-Apr-2018.) (Revised by AV, 11-Jun-2018.) (Proof shortened by AV, 3-Nov-2018.) |
Ref | Expression |
---|---|
cshwcshid.1 | |
cshwcshid.2 |
Ref | Expression |
---|---|
cshwcshid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cshwcshid.2 | . . . . . . 7 | |
2 | fznn0sub2 11810 | . . . . . . . 8 | |
3 | oveq2 6304 | . . . . . . . . 9 | |
4 | 3 | eleq2d 2527 | . . . . . . . 8 |
5 | 2, 4 | syl5ibr 221 | . . . . . . 7 |
6 | 1, 5 | syl 16 | . . . . . 6 |
7 | 6 | com12 31 | . . . . 5 |
8 | 7 | adantr 465 | . . . 4 |
9 | 8 | impcom 430 | . . 3 |
10 | cshwcshid.1 | . . . . . . . 8 | |
11 | simpl 457 | . . . . . . . . 9 | |
12 | elfzelz 11717 | . . . . . . . . . 10 | |
13 | 12 | adantl 466 | . . . . . . . . 9 |
14 | elfz2nn0 11798 | . . . . . . . . . . 11 | |
15 | nn0z 10912 | . . . . . . . . . . . . 13 | |
16 | nn0z 10912 | . . . . . . . . . . . . 13 | |
17 | zsubcl 10931 | . . . . . . . . . . . . 13 | |
18 | 15, 16, 17 | syl2anr 478 | . . . . . . . . . . . 12 |
19 | 18 | 3adant3 1016 | . . . . . . . . . . 11 |
20 | 14, 19 | sylbi 195 | . . . . . . . . . 10 |
21 | 20 | adantl 466 | . . . . . . . . 9 |
22 | 11, 13, 21 | 3jca 1176 | . . . . . . . 8 |
23 | 10, 22 | sylan 471 | . . . . . . 7 |
24 | 2cshw 12781 | . . . . . . 7 | |
25 | 23, 24 | syl 16 | . . . . . 6 |
26 | nn0cn 10830 | . . . . . . . . . . . 12 | |
27 | nn0cn 10830 | . . . . . . . . . . . 12 | |
28 | 26, 27 | anim12i 566 | . . . . . . . . . . 11 |
29 | 28 | 3adant3 1016 | . . . . . . . . . 10 |
30 | 14, 29 | sylbi 195 | . . . . . . . . 9 |
31 | pncan3 9851 | . . . . . . . . 9 | |
32 | 30, 31 | syl 16 | . . . . . . . 8 |
33 | 32 | adantl 466 | . . . . . . 7 |
34 | 33 | oveq2d 6312 | . . . . . 6 |
35 | cshwn 12768 | . . . . . . . 8 | |
36 | 10, 35 | syl 16 | . . . . . . 7 |
37 | 36 | adantr 465 | . . . . . 6 |
38 | 25, 34, 37 | 3eqtrrd 2503 | . . . . 5 |
39 | 38 | adantrr 716 | . . . 4 |
40 | oveq1 6303 | . . . . . . 7 | |
41 | 40 | eqeq2d 2471 | . . . . . 6 |
42 | 41 | adantl 466 | . . . . 5 |
43 | 42 | adantl 466 | . . . 4 |
44 | 39, 43 | mpbird 232 | . . 3 |
45 | oveq2 6304 | . . . . 5 | |
46 | 45 | eqeq2d 2471 | . . . 4 |
47 | 46 | rspcev 3210 | . . 3 |
48 | 9, 44, 47 | syl2anc 661 | . 2 |
49 | 48 | ex 434 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 = wceq 1395
e. wcel 1818 E. wrex 2808 class class class wbr 4452
` cfv 5593 (class class class)co 6296
cc 9511 0 cc0 9513 caddc 9516 cle 9650 cmin 9828 cn0 10820
cz 10889 cfz 11701 chash 12405 Word cword 12534 ccsh 12759 |
This theorem is referenced by: erclwwlksym 24814 erclwwlknsym 24826 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-oadd 7153 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-sup 7921 df-card 8341 df-cda 8569 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-n0 10821 df-z 10890 df-uz 11111 df-rp 11250 df-fz 11702 df-fzo 11825 df-fl 11929 df-mod 11997 df-hash 12406 df-word 12542 df-concat 12544 df-substr 12546 df-csh 12760 |
Copyright terms: Public domain | W3C validator |