 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cvjust Unicode version

Theorem cvjust 2451
 Description: Every set is a class. Proposition 4.9 of [TakeutiZaring] p. 13. This theorem shows that a setvar variable can be expressed as a class abstraction. This provides a motivation for the class syntax construction cv 1394, which allows us to substitute a setvar variable for a class variable. See also cab 2442 and df-clab 2443. Note that this is not a rigorous justification, because cv 1394 is used as part of the proof of this theorem, but a careful argument can be made outside of the formalism of Metamath, for example as is done in Chapter 4 of Takeuti and Zaring. See also the discussion under the definition of class in [Jech] p. 4 showing that "Every set can be considered to be a class." (Contributed by NM, 7-Nov-2006.)
Assertion
Ref Expression
cvjust
Distinct variable group:   ,

Proof of Theorem cvjust
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2450 . 2
2 df-clab 2443 . . 3
3 elsb3 2178 . . 3
42, 3bitr2i 250 . 2
51, 4mpgbir 1622 1
 Colors of variables: wff setvar class Syntax hints:  <->wb 184  =wceq 1395  [wsb 1739  e.wcel 1818  {cab 2442 This theorem is referenced by:  cnambfre  30063 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-8 1820  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449
 Copyright terms: Public domain W3C validator