![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > dcomex | Unicode version |
Description: The Axiom of Dependent Choice implies Infinity, the way we have stated it. Thus, we have Inf+AC implies DC and DC implies Inf, but AC does not imply Inf. (Contributed by Mario Carneiro, 25-Jan-2013.) |
Ref | Expression |
---|---|
dcomex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 4693 | . . 3 | |
2 | 1on 7156 | . . . . . . . . . 10 | |
3 | 2 | elexi 3119 | . . . . . . . . 9 |
4 | 3, 3 | fvsn 6104 | . . . . . . . 8 |
5 | 3, 3 | funsn 5641 | . . . . . . . . 9 |
6 | 3 | snid 4057 | . . . . . . . . . 10 |
7 | 3 | dmsnop 5487 | . . . . . . . . . 10 |
8 | 6, 7 | eleqtrri 2544 | . . . . . . . . 9 |
9 | funbrfvb 5915 | . . . . . . . . 9 | |
10 | 5, 8, 9 | mp2an 672 | . . . . . . . 8 |
11 | 4, 10 | mpbi 208 | . . . . . . 7 |
12 | breq12 4457 | . . . . . . . 8 | |
13 | 3, 3, 12 | spc2ev 3202 | . . . . . . 7 |
14 | 11, 13 | ax-mp 5 | . . . . . 6 |
15 | breq 4454 | . . . . . . 7 | |
16 | 15 | 2exbidv 1716 | . . . . . 6 |
17 | 14, 16 | mpbiri 233 | . . . . 5 |
18 | ssid 3522 | . . . . . . 7 | |
19 | 3 | rnsnop 5494 | . . . . . . 7 |
20 | 18, 19, 7 | 3sstr4i 3542 | . . . . . 6 |
21 | rneq 5233 | . . . . . . 7 | |
22 | dmeq 5208 | . . . . . . 7 | |
23 | 21, 22 | sseq12d 3532 | . . . . . 6 |
24 | 20, 23 | mpbiri 233 | . . . . 5 |
25 | pm5.5 336 | . . . . 5 | |
26 | 17, 24, 25 | syl2anc 661 | . . . 4 |
27 | breq 4454 | . . . . . 6 | |
28 | 27 | ralbidv 2896 | . . . . 5 |
29 | 28 | exbidv 1714 | . . . 4 |
30 | 26, 29 | bitrd 253 | . . 3 |
31 | ax-dc 8847 | . . 3 | |
32 | 1, 30, 31 | vtocl 3161 | . 2 |
33 | 1n0 7164 | . . . . . . . 8 | |
34 | df-br 4453 | . . . . . . . . 9 | |
35 | elsni 4054 | . . . . . . . . . 10 | |
36 | fvex 5881 | . . . . . . . . . . 11 | |
37 | fvex 5881 | . . . . . . . . . . 11 | |
38 | 36, 37 | opth1 4725 | . . . . . . . . . 10 |
39 | 35, 38 | syl 16 | . . . . . . . . 9 |
40 | 34, 39 | sylbi 195 | . . . . . . . 8 |
41 | tz6.12i 5891 | . . . . . . . 8 | |
42 | 33, 40, 41 | mpsyl 63 | . . . . . . 7 |
43 | vex 3112 | . . . . . . . 8 | |
44 | 43, 3 | breldm 5212 | . . . . . . 7 |
45 | 42, 44 | syl 16 | . . . . . 6 |
46 | 45 | ralimi 2850 | . . . . 5 |
47 | dfss3 3493 | . . . . 5 | |
48 | 46, 47 | sylibr 212 | . . . 4 |
49 | vex 3112 | . . . . . 6 | |
50 | 49 | dmex 6733 | . . . . 5 |
51 | 50 | ssex 4596 | . . . 4 |
52 | 48, 51 | syl 16 | . . 3 |
53 | 52 | exlimiv 1722 | . 2 |
54 | 32, 53 | ax-mp 5 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 E. wex 1612
e. wcel 1818 =/= wne 2652 A. wral 2807
cvv 3109
C_ wss 3475 c0 3784 { csn 4029 <. cop 4035
class class class wbr 4452 con0 4883 suc csuc 4885 dom cdm 5004
ran crn 5005 Fun wfun 5587 ` cfv 5593
com 6700
c1o 7142 |
This theorem is referenced by: axdc2lem 8849 axdc3lem 8851 axdc4lem 8856 axcclem 8858 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 ax-un 6592 ax-dc 8847 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-iota 5556 df-fun 5595 df-fn 5596 df-fv 5601 df-1o 7149 |
Copyright terms: Public domain | W3C validator |