![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ddif | Unicode version |
Description: Double complement under universal class. Exercise 4.10(s) of [Mendelson] p. 231. (Contributed by NM, 8-Jan-2002.) |
Ref | Expression |
---|---|
ddif |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3112 | . . . . 5 | |
2 | eldif 3485 | . . . . 5 | |
3 | 1, 2 | mpbiran 918 | . . . 4 |
4 | 3 | con2bii 332 | . . 3 |
5 | 1 | biantrur 506 | . . 3 |
6 | 4, 5 | bitr2i 250 | . 2 |
7 | 6 | difeqri 3623 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 /\ wa 369
= wceq 1395 e. wcel 1818 cvv 3109
\ cdif 3472 |
This theorem is referenced by: dfun3 3735 dfin3 3736 invdif 3738 ssindif0 3880 difdifdir 3915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-dif 3478 |
Copyright terms: Public domain | W3C validator |