![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > decadd | Unicode version |
Description: Add two numerals and (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
decma.1 | |
decma.2 | |
decma.3 | |
decma.4 | |
decma.5 |
No typesetting for: |- M = ; A B |
decma.6 |
No typesetting for: |- N = ; C D |
decadd.7 | |
decadd.8 |
Ref | Expression |
---|---|
decadd |
No typesetting for: |- ( M + N ) = ; E F |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 10nn0 10845 | . . 3 | |
2 | decma.1 | . . 3 | |
3 | decma.2 | . . 3 | |
4 | decma.3 | . . 3 | |
5 | decma.4 | . . 3 | |
6 | decma.5 |
. . . 4
No typesetting for: |- M = ; A B | |
7 | df-dec 11005 |
. . . 4
No typesetting for: |- ; A B = ( ( 10 x. A ) + B ) | |
8 | 6, 7 | eqtri 2486 | . . 3 |
9 | decma.6 |
. . . 4
No typesetting for: |- N = ; C D | |
10 | df-dec 11005 |
. . . 4
No typesetting for: |- ; C D = ( ( 10 x. C ) + D ) | |
11 | 9, 10 | eqtri 2486 | . . 3 |
12 | decadd.7 | . . 3 | |
13 | decadd.8 | . . 3 | |
14 | 1, 2, 3, 4, 5, 8, 11, 12, 13 | numadd 11038 | . 2 |
15 | df-dec 11005 |
. 2
No typesetting for: |- ; E F = ( ( 10 x. E ) + F ) | |
16 | 14, 15 | eqtr4i 2489 |
1
No typesetting for: |- ( M + N ) = ; E F |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1395 e. wcel 1818
(class class class)co 6296 caddc 9516 cmul 9518 c10 10618 cn0 10820
; cdc 11004 |
This theorem is referenced by: decaddi 11048 10p10e20 11074 dec5dvds2 14551 2exp16 14575 37prm 14606 43prm 14607 317prm 14611 631prm 14612 1259lem1 14613 1259lem2 14614 1259lem3 14615 1259lem4 14616 2503lem1 14619 2503lem2 14620 4001lem1 14623 4001lem2 14624 4001lem3 14625 log2ublem3 23279 log2ub 23280 1kp2ke3k 25167 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-om 6701 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-ltxr 9654 df-nn 10562 df-2 10619 df-3 10620 df-4 10621 df-5 10622 df-6 10623 df-7 10624 df-8 10625 df-9 10626 df-10 10627 df-n0 10821 df-dec 11005 |
Copyright terms: Public domain | W3C validator |