![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > decma | Unicode version |
Description: Perform a multiply-add of two numerals and against a fixed multiplicand (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
decma.1 | |
decma.2 | |
decma.3 | |
decma.4 | |
decma.5 |
No typesetting for: |- M = ; A B |
decma.6 |
No typesetting for: |- N = ; C D |
decma.7 | |
decma.8 | |
decma.9 |
Ref | Expression |
---|---|
decma |
No typesetting for: |- ( ( M x. P ) + N ) = ; E F |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 10nn0 10845 | . . 3 | |
2 | decma.1 | . . 3 | |
3 | decma.2 | . . 3 | |
4 | decma.3 | . . 3 | |
5 | decma.4 | . . 3 | |
6 | decma.5 |
. . . 4
No typesetting for: |- M = ; A B | |
7 | df-dec 11005 |
. . . 4
No typesetting for: |- ; A B = ( ( 10 x. A ) + B ) | |
8 | 6, 7 | eqtri 2486 | . . 3 |
9 | decma.6 |
. . . 4
No typesetting for: |- N = ; C D | |
10 | df-dec 11005 |
. . . 4
No typesetting for: |- ; C D = ( ( 10 x. C ) + D ) | |
11 | 9, 10 | eqtri 2486 | . . 3 |
12 | decma.7 | . . 3 | |
13 | decma.8 | . . 3 | |
14 | decma.9 | . . 3 | |
15 | 1, 2, 3, 4, 5, 8, 11, 12, 13, 14 | numma 11035 | . 2 |
16 | df-dec 11005 |
. 2
No typesetting for: |- ; E F = ( ( 10 x. E ) + F ) | |
17 | 15, 16 | eqtr4i 2489 |
1
No typesetting for: |- ( ( M x. P ) + N ) = ; E F |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1395 e. wcel 1818
(class class class)co 6296 caddc 9516 cmul 9518 c10 10618 cn0 10820
; cdc 11004 |
This theorem is referenced by: 2503lem2 14620 4001lem1 14623 4001lem2 14624 4001lem3 14625 log2ub 23280 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-om 6701 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-ltxr 9654 df-nn 10562 df-2 10619 df-3 10620 df-4 10621 df-5 10622 df-6 10623 df-7 10624 df-8 10625 df-9 10626 df-10 10627 df-n0 10821 df-dec 11005 |
Copyright terms: Public domain | W3C validator |