![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > dedth4h | Unicode version |
Description: Weak deduction theorem eliminating four hypotheses. See comments in dedth2h 3994. (Contributed by NM, 16-May-1999.) |
Ref | Expression |
---|---|
dedth4h.1 | |
dedth4h.2 | |
dedth4h.3 | |
dedth4h.4 | |
dedth4h.5 |
Ref | Expression |
---|---|
dedth4h |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dedth4h.1 | . . . 4 | |
2 | 1 | imbi2d 316 | . . 3 |
3 | dedth4h.2 | . . . 4 | |
4 | 3 | imbi2d 316 | . . 3 |
5 | dedth4h.3 | . . . 4 | |
6 | dedth4h.4 | . . . 4 | |
7 | dedth4h.5 | . . . 4 | |
8 | 5, 6, 7 | dedth2h 3994 | . . 3 |
9 | 2, 4, 8 | dedth2h 3994 | . 2 |
10 | 9 | imp 429 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 if cif 3941 |
This theorem is referenced by: dedth4v 3999 fprg 6080 omopth 7326 nn0opth2 12352 ax5seglem8 24239 hvsubsub4 25977 norm3lemt 26069 eigorth 26757 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-if 3942 |
Copyright terms: Public domain | W3C validator |