MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-2nd Unicode version

Definition df-2nd 6584
Description: Define a function that extracts the second member, or ordinate, of an ordered pair. Theorem op2nd 6592 proves that it does this. For example, . Equivalent to Definition 5.13 (ii) of [Monk1] p. 52 (compare op2nda 5344 and op2ndb 5343). The notation is the same as Monk's. (Contributed by NM, 9-Oct-2004.)
Assertion
Ref Expression
df-2nd

Detailed syntax breakdown of Definition df-2nd
StepHypRef Expression
1 c2nd 6582 . 2
2 vx . . 3
3 cvv 3015 . . 3
42cv 1669 . . . . . 6
54csn 3909 . . . . 5
65crn 4863 . . . 4
76cuni 4117 . . 3
82, 3, 7cmpt 4376 . 2
91, 8wceq 1670 1
Colors of variables: wff set class
This definition is referenced by:  2ndval  6586  fo2nd  6603  f2ndres  6605  hashf1rn  11972
  Copyright terms: Public domain W3C validator