MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-cj Unicode version

Definition df-cj 12932
Description: Define the complex conjugate function. See cjcli 13002 for its closure and cjval 12935 for its value. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
Assertion
Ref Expression
df-cj
Distinct variable group:   ,

Detailed syntax breakdown of Definition df-cj
StepHypRef Expression
1 ccj 12929 . 2
2 vx . . 3
3 cc 9511 . . 3
42cv 1394 . . . . . . 7
5 vy . . . . . . . 8
65cv 1394 . . . . . . 7
7 caddc 9516 . . . . . . 7
84, 6, 7co 6296 . . . . . 6
9 cr 9512 . . . . . 6
108, 9wcel 1818 . . . . 5
11 ci 9515 . . . . . . 7
12 cmin 9828 . . . . . . . 8
134, 6, 12co 6296 . . . . . . 7
14 cmul 9518 . . . . . . 7
1511, 13, 14co 6296 . . . . . 6
1615, 9wcel 1818 . . . . 5
1710, 16wa 369 . . . 4
1817, 5, 3crio 6256 . . 3
192, 3, 18cmpt 4510 . 2
201, 19wceq 1395 1
Colors of variables: wff setvar class
This definition is referenced by:  cjval  12935  cjf  12937
  Copyright terms: Public domain W3C validator