MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-disj Unicode version

Definition df-disj 4423
Description: A collection of classes (x) is disjoint when for each element , it is in (x) for at most one . (Contributed by Mario Carneiro, 14-Nov-2016.) (Revised by NM, 16-Jun-2017.)
Assertion
Ref Expression
df-disj
Distinct variable groups:   ,   ,   ,

Detailed syntax breakdown of Definition df-disj
StepHypRef Expression
1 vx . . 3
2 cA . . 3
3 cB . . 3
41, 2, 3wdisj 4422 . 2
5 vy . . . . . 6
65cv 1394 . . . . 5
76, 3wcel 1818 . . . 4
87, 1, 2wrmo 2810 . . 3
98, 5wal 1393 . 2
104, 9wb 184 1
Colors of variables: wff setvar class
This definition is referenced by:  dfdisj2  4424  disjss2  4425  cbvdisj  4432  nfdisj1  4435  disjor  4436  disjiun  4442  cbvdisjf  27434  disjss1f  27435  disjorf  27440  disjin  27446  disjrdx  27450  ddemeas  28208
  Copyright terms: Public domain W3C validator