MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-div Unicode version

Definition df-div 10232
Description: Define division. Theorem divmuli 10323 relates it to multiplication, and divcli 10311 and redivcli 10336 prove its closure laws. (Contributed by NM, 2-Feb-1995.) (Revised by Mario Carneiro, 1-Apr-2014.) (New usage is discouraged.)
Assertion
Ref Expression
df-div
Distinct variable group:   , ,

Detailed syntax breakdown of Definition df-div
StepHypRef Expression
1 cdiv 10231 . 2
2 vx . . 3
3 vy . . 3
4 cc 9511 . . 3
5 cc0 9513 . . . . 5
65csn 4029 . . . 4
74, 6cdif 3472 . . 3
83cv 1394 . . . . . 6
9 vz . . . . . . 7
109cv 1394 . . . . . 6
11 cmul 9518 . . . . . 6
128, 10, 11co 6296 . . . . 5
132cv 1394 . . . . 5
1412, 13wceq 1395 . . . 4
1514, 9, 4crio 6256 . . 3
162, 3, 4, 7, 15cmpt2 6298 . 2
171, 16wceq 1395 1
Colors of variables: wff setvar class
This definition is referenced by:  1div0  10233  divval  10234  elq  11213  cnflddiv  18448  divcn  21372  1div0apr  25176
  Copyright terms: Public domain W3C validator