MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-div Unicode version

Definition df-div 9808
Description: Define division. Theorem divmuli 9899 relates it to multiplication, and divcli 9887 and redivcli 9912 prove its closure laws. (Contributed by NM, 2-Feb-1995.) (Revised by Mario Carneiro, 1-Apr-2014.) (New usage is discouraged.)
Assertion
Ref Expression
df-div
Distinct variable group:   , ,

Detailed syntax breakdown of Definition df-div
StepHypRef Expression
1 cdiv 9807 . 2
2 vx . . 3
3 vy . . 3
4 cc 9102 . . 3
5 cc0 9104 . . . . 5
65csn 3894 . . . 4
74, 6cdif 3350 . . 3
83cv 1661 . . . . . 6
9 vz . . . . . . 7
109cv 1661 . . . . . 6
11 cmul 9109 . . . . . 6
128, 10, 11co 6067 . . . . 5
132cv 1661 . . . . 5
1412, 13wceq 1662 . . . 4
1514, 9, 4crio 6025 . . 3
162, 3, 4, 7, 15cmpt2 6069 . 2
171, 16wceq 1662 1
Colors of variables: wff set class
This definition is referenced by:  1div0  9809  divval  9810  elq  10762  cnflddiv  17234  divcn  19402  1div0apr  22271
  Copyright terms: Public domain W3C validator