MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-div Unicode version

Definition df-div 9994
Description: Define division. Theorem divmuli 10085 relates it to multiplication, and divcli 10073 and redivcli 10098 prove its closure laws. (Contributed by NM, 2-Feb-1995.) (Revised by Mario Carneiro, 1-Apr-2014.) (New usage is discouraged.)
Assertion
Ref Expression
df-div
Distinct variable group:   , ,

Detailed syntax breakdown of Definition df-div
StepHypRef Expression
1 cdiv 9993 . 2
2 vx . . 3
3 vy . . 3
4 cc 9280 . . 3
5 cc0 9282 . . . . 5
65csn 3877 . . . 4
74, 6cdif 3325 . . 3
83cv 1368 . . . . . 6
9 vz . . . . . . 7
109cv 1368 . . . . . 6
11 cmul 9287 . . . . . 6
128, 10, 11co 6091 . . . . 5
132cv 1368 . . . . 5
1412, 13wceq 1369 . . . 4
1514, 9, 4crio 6051 . . 3
162, 3, 4, 7, 15cmpt2 6093 . 2
171, 16wceq 1369 1
Colors of variables: wff setvar class
This definition is referenced by:  1div0  9995  divval  9996  elq  10955  cnflddiv  17846  divcn  20444  1div0apr  23661
  Copyright terms: Public domain W3C validator