MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-dom Unicode version

Definition df-dom 7446
Description: Define the dominance relation. For an alternate definition see dfdom2 7469. Compare Definition of [Enderton] p. 145. Typical textbook definitions are derived as brdom 7456 and domen 7457. (Contributed by NM, 28-Mar-1998.)
Assertion
Ref Expression
df-dom
Distinct variable group:   , ,

Detailed syntax breakdown of Definition df-dom
StepHypRef Expression
1 cdom 7442 . 2
2 vx . . . . . 6
32cv 1369 . . . . 5
4 vy . . . . . 6
54cv 1369 . . . . 5
6 vf . . . . . 6
76cv 1369 . . . . 5
83, 5, 7wf1 5534 . . . 4
98, 6wex 1587 . . 3
109, 2, 4copab 4466 . 2
111, 10wceq 1370 1
Colors of variables: wff setvar class
This definition is referenced by:  reldom  7450  brdomg  7454  enssdom  7468
  Copyright terms: Public domain W3C validator