MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-dom Unicode version

Definition df-dom 7160
Description: Define the dominance relation. For an alternate definition see dfdom2 7182. Compare Definition of [Enderton] p. 145. Typical textbook definitions are derived as brdom 7169 and domen 7170. (Contributed by NM, 28-Mar-1998.)
Assertion
Ref Expression
df-dom
Distinct variable group:   , ,

Detailed syntax breakdown of Definition df-dom
StepHypRef Expression
1 cdom 7156 . 2
2 vx . . . . . 6
32cv 1653 . . . . 5
4 vy . . . . . 6
54cv 1653 . . . . 5
6 vf . . . . . 6
76cv 1653 . . . . 5
83, 5, 7wf1 5498 . . . 4
98, 6wex 1551 . . 3
109, 2, 4copab 4300 . 2
111, 10wceq 1654 1
Colors of variables: wff set class
This definition is referenced by:  reldom  7164  brdomg  7167  enssdom  7181
  Copyright terms: Public domain W3C validator