MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-dvds Unicode version

Definition df-dvds 13987
Description: Define the divides relation. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
df-dvds
Distinct variable group:   , ,

Detailed syntax breakdown of Definition df-dvds
StepHypRef Expression
1 cdvds 13986 . 2
2 vx . . . . . . 7
32cv 1394 . . . . . 6
4 cz 10889 . . . . . 6
53, 4wcel 1818 . . . . 5
6 vy . . . . . . 7
76cv 1394 . . . . . 6
87, 4wcel 1818 . . . . 5
95, 8wa 369 . . . 4
10 vn . . . . . . . 8
1110cv 1394 . . . . . . 7
12 cmul 9518 . . . . . . 7
1311, 3, 12co 6296 . . . . . 6
1413, 7wceq 1395 . . . . 5
1514, 10, 4wrex 2808 . . . 4
169, 15wa 369 . . 3
1716, 2, 6copab 4509 . 2
181, 17wceq 1395 1
Colors of variables: wff setvar class
This definition is referenced by:  divides  13988  dvdszrcl  13991  dvdsrzring  18507  dvdsrz  18508  reldvds  31220
  Copyright terms: Public domain W3C validator