MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-gcd Unicode version

Definition df-gcd 14145
Description: Define the operator. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
df-gcd
Distinct variable group:   , ,

Detailed syntax breakdown of Definition df-gcd
StepHypRef Expression
1 cgcd 14144 . 2
2 vx . . 3
3 vy . . 3
4 cz 10889 . . 3
52cv 1394 . . . . . 6
6 cc0 9513 . . . . . 6
75, 6wceq 1395 . . . . 5
83cv 1394 . . . . . 6
98, 6wceq 1395 . . . . 5
107, 9wa 369 . . . 4
11 vn . . . . . . . . 9
1211cv 1394 . . . . . . . 8
13 cdvds 13986 . . . . . . . 8
1412, 5, 13wbr 4452 . . . . . . 7
1512, 8, 13wbr 4452 . . . . . . 7
1614, 15wa 369 . . . . . 6
1716, 11, 4crab 2811 . . . . 5
18 cr 9512 . . . . 5
19 clt 9649 . . . . 5
2017, 18, 19csup 7920 . . . 4
2110, 6, 20cif 3941 . . 3
222, 3, 4, 4, 21cmpt2 6298 . 2
231, 22wceq 1395 1
Colors of variables: wff setvar class
This definition is referenced by:  gcdval  14146  gcdf  14157
  Copyright terms: Public domain W3C validator