Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-in Unicode version

Definition df-in 3449
 Description: Define the intersection of two classes. Definition 5.6 of [TakeutiZaring] p. 16. For example, (ex-in 24101). Contrast this operation with union (df-un 3447) and difference (df-dif 3445). For alternate definitions in terms of class difference, requiring no dummy variables, see dfin2 3700 and dfin4 3704. For intersection defined in terms of union, see dfin3 3703. (Contributed by NM, 29-Apr-1994.)
Assertion
Ref Expression
df-in
Distinct variable groups:   ,   ,

Detailed syntax breakdown of Definition df-in
StepHypRef Expression
1 cA . . 3
2 cB . . 3
31, 2cin 3441 . 2
4 vx . . . . . 6
54cv 1369 . . . . 5
65, 1wcel 1758 . . . 4
75, 2wcel 1758 . . . 4
86, 7wa 369 . . 3
98, 4cab 2439 . 2
103, 9wceq 1370 1
 Colors of variables: wff setvar class This definition is referenced by:  dfin5  3450  dfss2  3459  elin  3653  disj  3833  iinxprg  4365  disjex  26402  disjexc  26403  eulerpartlemt  27210  iocinico  30047  csbingVD  32463
 Copyright terms: Public domain W3C validator