MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-lim Unicode version

Definition df-lim 4888
Description: Define the limit ordinal predicate, which is true for a nonempty ordinal that is not a successor (i.e. that is the union of itself). Our definition combines the definition of Lim of [BellMachover] p. 471 and Exercise 1 of [TakeutiZaring] p. 42. See dflim2 4939, dflim3 6682, and dflim4 for alternate definitions. (Contributed by NM, 22-Apr-1994.)
Assertion
Ref Expression
df-lim

Detailed syntax breakdown of Definition df-lim
StepHypRef Expression
1 cA . . 3
21wlim 4884 . 2
31word 4882 . . 3
4 c0 3784 . . . 4
51, 4wne 2652 . . 3
61cuni 4249 . . . 4
71, 6wceq 1395 . . 3
83, 5, 7w3a 973 . 2
92, 8wb 184 1
Colors of variables: wff setvar class
This definition is referenced by:  limeq  4895  dflim2  4939  limord  4942  limuni  4943  unizlim  4999  limon  6671  dflim3  6682  nnsuc  6717  onfununi  7031  dfrdg2  29228  ellimits  29560
  Copyright terms: Public domain W3C validator