MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-lsm Unicode version

Definition df-lsm 16296
Description: Define subgroup sum (inner direct product of subgroups). (Contributed by NM, 28-Jan-2014.)
Assertion
Ref Expression
df-lsm
Distinct variable group:   , , , ,

Detailed syntax breakdown of Definition df-lsm
StepHypRef Expression
1 clsm 16294 . 2
2 vw . . 3
3 cvv 3081 . . 3
4 vt . . . 4
5 vu . . . 4
62cv 1369 . . . . . 6
7 cbs 14332 . . . . . 6
86, 7cfv 5537 . . . . 5
98cpw 3976 . . . 4
10 vx . . . . . 6
11 vy . . . . . 6
124cv 1369 . . . . . 6
135cv 1369 . . . . . 6
1410cv 1369 . . . . . . 7
1511cv 1369 . . . . . . 7
16 cplusg 14397 . . . . . . . 8
176, 16cfv 5537 . . . . . . 7
1814, 15, 17co 6222 . . . . . 6
1910, 11, 12, 13, 18cmpt2 6224 . . . . 5
2019crn 4958 . . . 4
214, 5, 9, 9, 20cmpt2 6224 . . 3
222, 3, 21cmpt 4467 . 2
231, 22wceq 1370 1
Colors of variables: wff setvar class
This definition is referenced by:  lsmfval  16298
  Copyright terms: Public domain W3C validator