MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-nfc Unicode version

Definition df-nfc 2568
Description: Define the not-free predicate for classes. This is read " is not free in ". Not-free means that the value of cannot affect the value of , e.g., any occurrence of in is effectively bound by a "for all" or something that expands to one (such as "there exists"). It is defined in terms of the not-free predicate df-nf 1555 for wffs; see that definition for more information. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
df-nfc
Distinct variable groups:   ,   ,
Allowed substitution hint:   ( )

Detailed syntax breakdown of Definition df-nfc
StepHypRef Expression
1 vx . . 3
2 cA . . 3
31, 2wnfc 2566 . 2
4 vy . . . . . 6
54cv 1653 . . . . 5
65, 2wcel 1728 . . . 4
76, 1wnf 1554 . . 3
87, 4wal 1550 . 2
93, 8wb 178 1
Colors of variables: wff set class
This definition is referenced by:  nfci  2569  nfcr  2571  nfcd  2574  nfceqi  2575  nfceqdf  2578  nfnfc1  2582  nfnfc  2585  drnfc1  2595  drnfc2  2596  dfnfc2  4060  nfnid  4432
  Copyright terms: Public domain W3C validator