Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-nfc Unicode version

Definition df-nfc 2606
 Description: Define the not-free predicate for classes. This is read " is not free in ". Not-free means that the value of cannot affect the value of , e.g., any occurrence of in is effectively bound by a "for all" or something that expands to one (such as "there exists"). It is defined in terms of the not-free predicate df-nf 1561 for wffs; see that definition for more information. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
df-nfc
Distinct variable groups:   ,   ,
Allowed substitution hint:   ()

Detailed syntax breakdown of Definition df-nfc
StepHypRef Expression
1 vx . . 3
2 cA . . 3
31, 2wnfc 2604 . 2
4 vy . . . . . 6
54cv 1661 . . . . 5
65, 2wcel 1724 . . . 4
76, 1wnf 1560 . . 3
87, 4wal 1556 . 2
93, 8wb 178 1
 Colors of variables: wff set class This definition is referenced by:  nfci  2607  nfcr  2609  nfcd  2612  nfceqi  2613  nfceqdf  2616  nfnfc1  2620  nfnfc  2623  drnfc1  2633  drnfc2  2634  dfnfc2  4119  nfnid  4528
 Copyright terms: Public domain W3C validator