Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-nfc Unicode version

Definition df-nfc 2607
 Description: Define the not-free predicate for classes. This is read " is not free in ". Not-free means that the value of cannot affect the value of , e.g., any occurrence of in is effectively bound by a "for all" or something that expands to one (such as "there exists"). It is defined in terms of the not-free predicate df-nf 1617 for wffs; see that definition for more information. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
df-nfc
Distinct variable groups:   ,   ,

Detailed syntax breakdown of Definition df-nfc
StepHypRef Expression
1 vx . . 3
2 cA . . 3
31, 2wnfc 2605 . 2
4 vy . . . . . 6
54cv 1394 . . . . 5
65, 2wcel 1818 . . . 4
76, 1wnf 1616 . . 3
87, 4wal 1393 . 2
93, 8wb 184 1
 Colors of variables: wff setvar class This definition is referenced by:  nfci  2608  nfcr  2610  nfcd  2613  nfceqdf  2614  nfceqiOLD  2616  nfnfc1  2622  nfnfc  2628  nfnfcALT  2629  drnfc1  2638  drnfc2  2639  dfnfc2  4267  nfnid  4681  bj-nfnfc  34429  bj-nfcf  34492
 Copyright terms: Public domain W3C validator