MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-phtpc Unicode version

Definition df-phtpc 20544
Description: Define the function which takes a topology and returns the path homotopy relation on that topology. Definition of [Hatcher] p. 25. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 7-Jun-2014.)
Assertion
Ref Expression
df-phtpc
Distinct variable group:   , ,

Detailed syntax breakdown of Definition df-phtpc
StepHypRef Expression
1 cphtpc 20521 . 2
2 vx . . 3
3 ctop 18478 . . 3
4 vf . . . . . . . 8
54cv 1368 . . . . . . 7
6 vg . . . . . . . 8
76cv 1368 . . . . . . 7
85, 7cpr 3874 . . . . . 6
9 cii 20431 . . . . . . 7
102cv 1368 . . . . . . 7
11 ccn 18808 . . . . . . 7
129, 10, 11co 6086 . . . . . 6
138, 12wss 3323 . . . . 5
14 cphtpy 20520 . . . . . . . 8
1510, 14cfv 5413 . . . . . . 7
165, 7, 15co 6086 . . . . . 6
17 c0 3632 . . . . . 6
1816, 17wne 2601 . . . . 5
1913, 18wa 369 . . . 4
2019, 4, 6copab 4344 . . 3
212, 3, 20cmpt 4345 . 2
221, 21wceq 1369 1
Colors of variables: wff setvar class
This definition is referenced by:  phtpcrel  20545  isphtpc  20546
  Copyright terms: Public domain W3C validator