MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-re Unicode version

Definition df-re 11956
Description: Define a function whose value is the real part of a complex number. See reval 11962 for its value, recli 12023 for its closure, and replim 11972 for its use in decomposing a complex number. (Contributed by NM, 9-May-1999.)
Assertion
Ref Expression
df-re

Detailed syntax breakdown of Definition df-re
StepHypRef Expression
1 cre 11953 . 2
2 vx . . 3
3 cc 9039 . . 3
42cv 1653 . . . . 5
5 ccj 11952 . . . . . 6
64, 5cfv 5501 . . . . 5
7 caddc 9044 . . . . 5
84, 6, 7co 6129 . . . 4
9 c2 10100 . . . 4
10 cdiv 9728 . . . 4
118, 9, 10co 6129 . . 3
122, 3, 11cmpt 4301 . 2
131, 12wceq 1654 1
Colors of variables: wff set class
This definition is referenced by:  reval  11962  ref  11968  cnre2csqima  24358
  Copyright terms: Public domain W3C validator