MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-shft Unicode version

Definition df-shft 12900
Description: Define a function shifter. This operation offsets the value argument of a function (ordinarily on a subset of ) and produces a new function on . See shftval 12907 for its value. (Contributed by NM, 20-Jul-2005.)
Assertion
Ref Expression
df-shft
Distinct variable group:   , , ,

Detailed syntax breakdown of Definition df-shft
StepHypRef Expression
1 cshi 12899 . 2
2 vf . . 3
3 vx . . 3
4 cvv 3109 . . 3
5 cc 9511 . . 3
6 vy . . . . . . 7
76cv 1394 . . . . . 6
87, 5wcel 1818 . . . . 5
93cv 1394 . . . . . . 7
10 cmin 9828 . . . . . . 7
117, 9, 10co 6296 . . . . . 6
12 vz . . . . . . 7
1312cv 1394 . . . . . 6
142cv 1394 . . . . . 6
1511, 13, 14wbr 4452 . . . . 5
168, 15wa 369 . . . 4
1716, 6, 12copab 4509 . . 3
182, 3, 4, 5, 17cmpt2 6298 . 2
191, 18wceq 1395 1
Colors of variables: wff setvar class
This definition is referenced by:  shftfval  12903
  Copyright terms: Public domain W3C validator