MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-vdwap Unicode version

Definition df-vdwap 14486
Description: Define the arithmetic progression function, which takes as input a length , a start point , and a step and outputs the set of points in this progression. (Contributed by Mario Carneiro, 18-Aug-2014.)
Assertion
Ref Expression
df-vdwap
Distinct variable group:   , , ,

Detailed syntax breakdown of Definition df-vdwap
StepHypRef Expression
1 cvdwa 14483 . 2
2 vk . . 3
3 cn0 10820 . . 3
4 va . . . 4
5 vd . . . 4
6 cn 10561 . . . 4
7 vm . . . . . 6
8 cc0 9513 . . . . . . 7
92cv 1394 . . . . . . . 8
10 c1 9514 . . . . . . . 8
11 cmin 9828 . . . . . . . 8
129, 10, 11co 6296 . . . . . . 7
13 cfz 11701 . . . . . . 7
148, 12, 13co 6296 . . . . . 6
154cv 1394 . . . . . . 7
167cv 1394 . . . . . . . 8
175cv 1394 . . . . . . . 8
18 cmul 9518 . . . . . . . 8
1916, 17, 18co 6296 . . . . . . 7
20 caddc 9516 . . . . . . 7
2115, 19, 20co 6296 . . . . . 6
227, 14, 21cmpt 4510 . . . . 5
2322crn 5005 . . . 4
244, 5, 6, 6, 23cmpt2 6298 . . 3
252, 3, 24cmpt 4510 . 2
261, 25wceq 1395 1
Colors of variables: wff setvar class
This definition is referenced by:  vdwapfval  14489
  Copyright terms: Public domain W3C validator