Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-xadd Unicode version

 Description: Define addition over extended real numbers. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
Distinct variable group:   ,

Detailed syntax breakdown of Definition df-xadd
StepHypRef Expression
2 vx . . 3
3 vy . . 3
4 cxr 9648 . . 3
52cv 1394 . . . . 5
6 cpnf 9646 . . . . 5
75, 6wceq 1395 . . . 4
83cv 1394 . . . . . 6
9 cmnf 9647 . . . . . 6
108, 9wceq 1395 . . . . 5
11 cc0 9513 . . . . 5
1210, 11, 6cif 3941 . . . 4
135, 9wceq 1395 . . . . 5
148, 6wceq 1395 . . . . . 6
1514, 11, 9cif 3941 . . . . 5
16 caddc 9516 . . . . . . . 8
175, 8, 16co 6296 . . . . . . 7
1810, 9, 17cif 3941 . . . . . 6
1914, 6, 18cif 3941 . . . . 5
2013, 15, 19cif 3941 . . . 4
217, 12, 20cif 3941 . . 3
222, 3, 4, 4, 21cmpt2 6298 . 2
231, 22wceq 1395 1
 Colors of variables: wff setvar class This definition is referenced by:  xaddval  11451  xaddf  11452
 Copyright terms: Public domain W3C validator