Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df2o2 Unicode version

Theorem df2o2 7163
 Description: Expanded value of the ordinal number 2. (Contributed by NM, 29-Jan-2004.)
Assertion
Ref Expression
df2o2

Proof of Theorem df2o2
StepHypRef Expression
1 df2o3 7162 . 2
2 df1o2 7161 . . 3
32preq2i 4113 . 2
41, 3eqtri 2486 1
 Colors of variables: wff setvar class Syntax hints:  =wceq 1395   c0 3784  {csn 4029  {cpr 4031   c1o 7142   c2o 7143 This theorem is referenced by:  2dom  7608  pw2eng  7643  pwcda1  8595  canthp1lem1  9051  pr0hash2ex  12473  hashpw  12494  znidomb  18600  ssoninhaus  29913  onint1  29914  pw2f1ocnv  30979 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-v 3111  df-dif 3478  df-un 3480  df-nul 3785  df-sn 4030  df-pr 4032  df-suc 4889  df-1o 7149  df-2o 7150
 Copyright terms: Public domain W3C validator