Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac1 Unicode version

Theorem dfac1 8535
 Description: Equivalence of two versions of the Axiom of Choice ax-ac 8860. The proof uses the Axiom of Regularity. The right-hand side expresses our AC with the fewest number of different variables. (Contributed by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
dfac1
Distinct variable group:   ,,,

Proof of Theorem dfac1
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfac7 8533 . 2
2 aceq1 8519 . . 3
32albii 1640 . 2
41, 3bitri 249 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  <->wb 184  /\wa 369  A.wal 1393  E.wex 1612  A.wral 2807  E.wrex 2808  E!wreu 2809   wac 8517 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-8 1820  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691  ax-un 6592  ax-reg 8039 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-pw 4014  df-sn 4030  df-pr 4032  df-op 4036  df-uni 4250  df-br 4453  df-opab 4511  df-mpt 4512  df-eprel 4796  df-id 4800  df-fr 4843  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-fv 5601  df-riota 6257  df-ac 8518
 Copyright terms: Public domain W3C validator