![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > dfackm | Unicode version |
Description: Equivalence of the Axiom of Choice and Maes' AC ackm 8866. The proof consists of lemmas kmlem1 8551 through kmlem16 8566 and this final theorem. AC is not used for the proof. Note: bypassing the first step (i.e. replacing dfac5 8530 with biid 236) establishes the AC equivalence shown by Maes' writeup. The left-hand-side AC shown here was chosen because it is shorter to display. (Contributed by NM, 13-Apr-2004.) (Revised by Mario Carneiro, 17-May-2015.) |
Ref | Expression |
---|---|
dfackm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfac5 8530 | . 2 | |
2 | eqid 2457 | . . . . 5 | |
3 | 2 | kmlem13 8563 | . . . 4 |
4 | kmlem8 8558 | . . . . 5 | |
5 | 4 | albii 1640 | . . . 4 |
6 | 3, 5 | bitri 249 | . . 3 |
7 | df-ne 2654 | . . . . . . . . 9 | |
8 | 7 | bicomi 202 | . . . . . . . 8 |
9 | 8 | anbi2i 694 | . . . . . . 7 |
10 | 9 | anbi1i 695 | . . . . . 6 |
11 | 10 | imbi2i 312 | . . . . 5 |
12 | biid 236 | . . . . 5 | |
13 | biid 236 | . . . . 5 | |
14 | 11, 12, 13 | kmlem16 8566 | . . . 4 |
15 | 14 | albii 1640 | . . 3 |
16 | 6, 15 | bitri 249 | . 2 |
17 | 1, 16 | bitri 249 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 \/ wo 368 /\ wa 369
A. wal 1393 = wceq 1395 E. wex 1612
e. wcel 1818 E! weu 2282 { cab 2442
=/= wne 2652 A. wral 2807 E. wrex 2808
\ cdif 3472 i^i cin 3474 c0 3784 { csn 4029 U. cuni 4249
wac 8517 |
This theorem is referenced by: axac3 8865 ackm 8866 axac2 8867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ac 8518 |
Copyright terms: Public domain | W3C validator |