 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfcnqs Unicode version

Theorem dfcnqs 9540
 Description: Technical trick to permit reuse of previous lemmas to prove arithmetic operation laws in from those in . The trick involves qsid 7396, which shows that the coset of the converse epsilon relation (which is not an equivalence relation) acts as an identity divisor for the quotient set operation. This lets us "pretend" that is a quotient set, even though it is not (compare df-c 9519), and allows us to reuse some of the equivalence class lemmas we developed for the transition from positive reals to signed reals, etc. (Contributed by NM, 13-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
dfcnqs

Proof of Theorem dfcnqs
StepHypRef Expression
1 df-c 9519 . 2
2 qsid 7396 . 2
31, 2eqtr4i 2489 1
 Colors of variables: wff setvar class Syntax hints:  =wceq 1395   cep 4794  X.cxp 5002  'ccnv 5003  /.`cqs 7329   cnr 9264   cc 9511 This theorem is referenced by:  axmulcom  9553  axaddass  9554  axmulass  9555  axdistr  9556 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-br 4453  df-opab 4511  df-eprel 4796  df-xp 5010  df-cnv 5012  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-ec 7332  df-qs 7336  df-c 9519
 Copyright terms: Public domain W3C validator