MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfdif2 Unicode version

Theorem dfdif2 3484
Description: Alternate definition of class difference. (Contributed by NM, 25-Mar-2004.)
Assertion
Ref Expression
dfdif2
Distinct variable groups:   ,   ,

Proof of Theorem dfdif2
StepHypRef Expression
1 df-dif 3478 . 2
2 df-rab 2816 . 2
31, 2eqtr4i 2489 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  /\wa 369  =wceq 1395  e.wcel 1818  {cab 2442  {crab 2811  \cdif 3472
This theorem is referenced by:  difeq1  3614  difeq2  3615  nfdif  3624  difidALT  3897  ordintdif  4932  kmlem3  8553  incexc2  13650  cnambfre  30063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-cleq 2449  df-rab 2816  df-dif 3478
  Copyright terms: Public domain W3C validator