![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > dfdif2 | Unicode version |
Description: Alternate definition of class difference. (Contributed by NM, 25-Mar-2004.) |
Ref | Expression |
---|---|
dfdif2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dif 3478 | . 2 | |
2 | df-rab 2816 | . 2 | |
3 | 1, 2 | eqtr4i 2489 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 /\ wa 369
= wceq 1395 e. wcel 1818 { cab 2442
{ crab 2811 \ cdif 3472 |
This theorem is referenced by: difeq1 3614 difeq2 3615 nfdif 3624 difidALT 3897 ordintdif 4932 kmlem3 8553 incexc2 13650 cnambfre 30063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-cleq 2449 df-rab 2816 df-dif 3478 |
Copyright terms: Public domain | W3C validator |