MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfdisj2 Unicode version

Theorem dfdisj2 4424
Description: Alternate definition for disjoint classes. (Contributed by NM, 17-Jun-2017.)
Assertion
Ref Expression
dfdisj2
Distinct variable groups:   ,   ,   ,

Proof of Theorem dfdisj2
StepHypRef Expression
1 df-disj 4423 . 2
2 df-rmo 2815 . . 3
32albii 1640 . 2
41, 3bitri 249 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  /\wa 369  A.wal 1393  e.wcel 1818  E*wmo 2283  E*wrmo 2810  Disj_wdisj 4422
This theorem is referenced by:  disjss1  4428  nfdisj  4434  disjmoOLD  4437  invdisj  4441  disjiunOLD  4443  sndisj  4444  disjxsn  4446  disjss3  4451  vitalilem3  22019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631
This theorem depends on definitions:  df-bi 185  df-rmo 2815  df-disj 4423
  Copyright terms: Public domain W3C validator