MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dff12 Unicode version

Theorem dff12 5727
Description: Alternate definition of a one-to-one function. (Contributed by NM, 31-Dec-1996.)
Assertion
Ref Expression
dff12
Distinct variable group:   , ,

Proof of Theorem dff12
StepHypRef Expression
1 df-f1 5542 . 2
2 funcnv2 5596 . . 3
32anbi2i 694 . 2
41, 3bitri 249 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  /\wa 369  A.wal 1368  E*wmo 2263   class class class wbr 4409  `'ccnv 4956  Funwfun 5531  -->wf 5533  -1-1->wf1 5534
This theorem is referenced by:  dff13  6096  fseqenlem2  8332  s4f1o  12686  2ndcdisj  19459  usgraexmpl  23788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4530  ax-nul 4538  ax-pr 4648
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2805  df-rex 2806  df-rab 2809  df-v 3083  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3752  df-if 3906  df-sn 3994  df-pr 3996  df-op 4000  df-br 4410  df-opab 4468  df-id 4753  df-xp 4963  df-rel 4964  df-cnv 4965  df-co 4966  df-fun 5539  df-f1 5542
  Copyright terms: Public domain W3C validator