![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > dff13 | Unicode version |
Description: A one-to-one function in terms of function values. Compare Theorem 4.8(iv) of [Monk1] p. 43. (Contributed by NM, 29-Oct-1996.) |
Ref | Expression |
---|---|
dff13 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dff12 5785 | . 2 | |
2 | ffn 5736 | . . . 4 | |
3 | vex 3112 | . . . . . . . . . . . . . . 15 | |
4 | vex 3112 | . . . . . . . . . . . . . . 15 | |
5 | 3, 4 | breldm 5212 | . . . . . . . . . . . . . 14 |
6 | fndm 5685 | . . . . . . . . . . . . . . 15 | |
7 | 6 | eleq2d 2527 | . . . . . . . . . . . . . 14 |
8 | 5, 7 | syl5ib 219 | . . . . . . . . . . . . 13 |
9 | vex 3112 | . . . . . . . . . . . . . . 15 | |
10 | 9, 4 | breldm 5212 | . . . . . . . . . . . . . 14 |
11 | 6 | eleq2d 2527 | . . . . . . . . . . . . . 14 |
12 | 10, 11 | syl5ib 219 | . . . . . . . . . . . . 13 |
13 | 8, 12 | anim12d 563 | . . . . . . . . . . . 12 |
14 | 13 | pm4.71rd 635 | . . . . . . . . . . 11 |
15 | eqcom 2466 | . . . . . . . . . . . . . . 15 | |
16 | fnbrfvb 5913 | . . . . . . . . . . . . . . 15 | |
17 | 15, 16 | syl5bb 257 | . . . . . . . . . . . . . 14 |
18 | eqcom 2466 | . . . . . . . . . . . . . . 15 | |
19 | fnbrfvb 5913 | . . . . . . . . . . . . . . 15 | |
20 | 18, 19 | syl5bb 257 | . . . . . . . . . . . . . 14 |
21 | 17, 20 | bi2anan9 873 | . . . . . . . . . . . . 13 |
22 | 21 | anandis 830 | . . . . . . . . . . . 12 |
23 | 22 | pm5.32da 641 | . . . . . . . . . . 11 |
24 | 14, 23 | bitr4d 256 | . . . . . . . . . 10 |
25 | 24 | imbi1d 317 | . . . . . . . . 9 |
26 | impexp 446 | . . . . . . . . 9 | |
27 | 25, 26 | syl6bb 261 | . . . . . . . 8 |
28 | 27 | albidv 1713 | . . . . . . 7 |
29 | 19.21v 1729 | . . . . . . . 8 | |
30 | 19.23v 1760 | . . . . . . . . . 10 | |
31 | fvex 5881 | . . . . . . . . . . . 12 | |
32 | 31 | eqvinc 3226 | . . . . . . . . . . 11 |
33 | 32 | imbi1i 325 | . . . . . . . . . 10 |
34 | 30, 33 | bitr4i 252 | . . . . . . . . 9 |
35 | 34 | imbi2i 312 | . . . . . . . 8 |
36 | 29, 35 | bitri 249 | . . . . . . 7 |
37 | 28, 36 | syl6bb 261 | . . . . . 6 |
38 | 37 | 2albidv 1715 | . . . . 5 |
39 | breq1 4455 | . . . . . . . 8 | |
40 | 39 | mo4 2337 | . . . . . . 7 |
41 | 40 | albii 1640 | . . . . . 6 |
42 | alrot3 1846 | . . . . . 6 | |
43 | 41, 42 | bitri 249 | . . . . 5 |
44 | r2al 2835 | . . . . 5 | |
45 | 38, 43, 44 | 3bitr4g 288 | . . . 4 |
46 | 2, 45 | syl 16 | . . 3 |
47 | 46 | pm5.32i 637 | . 2 |
48 | 1, 47 | bitri 249 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 = wceq 1395
E. wex 1612 e. wcel 1818 E* wmo 2283
A. wral 2807 class class class wbr 4452
dom cdm 5004 Fn wfn 5588 --> wf 5589
-1-1-> wf1 5590
` cfv 5593 |
This theorem is referenced by: dff13f 6167 f1veqaeq 6168 dff14a 6177 dff1o6 6181 fcof1 6190 soisoi 6224 f1o2ndf1 6908 fnwelem 6915 smo11 7054 tz7.48lem 7125 omsmo 7322 unxpdomlem3 7746 unfilem2 7805 fofinf1o 7821 inf3lem6 8071 r111 8214 fseqenlem1 8426 fodomacn 8458 alephf1 8487 alephiso 8500 ackbij1lem17 8637 infpssrlem5 8708 fin23lem28 8741 fin1a2lem2 8802 fin1a2lem4 8804 axcc2lem 8837 domtriomlem 8843 cnref1o 11244 injresinj 11926 om2uzf1oi 12064 wwlktovf1 12895 reeff1 13855 bitsf1 14096 crt 14308 eulerthlem2 14312 1arith 14445 vdwlem12 14510 xpsff1o 14965 setcmon 15414 yoniso 15554 ghmf1 16295 orbsta 16351 symgextf1 16446 symgfixf1 16462 odf1 16584 kerf1hrm 17392 mvrf1 18081 ply1sclf1 18330 znf1o 18590 cygznlem3 18608 uvcf1 18823 lindff1 18855 scmatf1 19033 mdetunilem8 19121 mat2pmatf1 19230 pm2mpf1 19300 ist0-4 20230 ovolicc2lem4 21931 recosf1o 22922 efif1olem4 22932 basellem4 23357 dvdsmulf1o 23470 lgsqrlem2 23617 lgseisenlem2 23625 axlowdimlem15 24259 wlkntrllem3 24563 wlkdvspthlem 24609 fargshiftf1 24637 constr3trllem2 24651 wlknwwlkninj 24711 wlkiswwlkinj 24718 wwlkextinj 24730 clwwlkf1 24796 clwlkf1clwwlk 24850 frgrancvvdeqlemB 25038 numclwlk1lem2f1 25094 pjmf1 26634 unopf1o 26835 erdszelem9 28643 mrsubff1 28874 msubff1 28916 mvhf1 28919 ghomf1olem 29034 f1opr 30215 grpokerinj 30347 dnnumch3 30993 sumnnodd 31636 dvnprodlem1 31743 fourierdlem34 31923 fourierdlem51 31940 fthestrcsetc 32656 embedsetcestrclem 32663 fthsetcestrc 32671 cdleme50f1 36269 dihf11 36994 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fv 5601 |
Copyright terms: Public domain | W3C validator |