![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > dffn2 | Unicode version |
Description: Any function is a mapping into . (Contributed by NM, 31-Oct-1995.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
dffn2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 3523 | . . 3 | |
2 | 1 | biantru 505 | . 2 |
3 | df-f 5597 | . 2 | |
4 | 2, 3 | bitr4i 252 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 /\ wa 369
cvv 3109
C_ wss 3475 ran crn 5005 Fn wfn 5588
--> wf 5589 |
This theorem is referenced by: f1cnvcnv 5794 fcoconst 6068 fnressn 6083 fndifnfp 6100 1stcof 6828 2ndcof 6829 fnmpt2 6868 tposfn 7003 tz7.48lem 7125 seqomlem2 7135 mptelixpg 7526 r111 8214 smobeth 8982 inar1 9174 imasvscafn 14934 fucidcl 15334 fucsect 15341 curfcl 15501 curf2ndf 15516 dsmmbas2 18768 frlmsslsp 18829 frlmsslspOLD 18830 frlmup1 18832 prdstopn 20129 prdstps 20130 ist0-4 20230 ptuncnv 20308 xpstopnlem2 20312 prdstgpd 20623 prdsxmslem2 21032 curry2ima 27526 fnchoice 31404 stoweidlem35 31817 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-v 3111 df-in 3482 df-ss 3489 df-f 5597 |
Copyright terms: Public domain | W3C validator |