![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > dffn5 | Unicode version |
Description: Representation of a function in terms of its values. (Contributed by FL, 14-Sep-2013.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
dffn5 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnrel 5684 | . . . . 5 | |
2 | dfrel4v 5463 | . . . . 5 | |
3 | 1, 2 | sylib 196 | . . . 4 |
4 | fnbr 5688 | . . . . . . . 8 | |
5 | 4 | ex 434 | . . . . . . 7 |
6 | 5 | pm4.71rd 635 | . . . . . 6 |
7 | eqcom 2466 | . . . . . . . 8 | |
8 | fnbrfvb 5913 | . . . . . . . 8 | |
9 | 7, 8 | syl5bb 257 | . . . . . . 7 |
10 | 9 | pm5.32da 641 | . . . . . 6 |
11 | 6, 10 | bitr4d 256 | . . . . 5 |
12 | 11 | opabbidv 4515 | . . . 4 |
13 | 3, 12 | eqtrd 2498 | . . 3 |
14 | df-mpt 4512 | . . 3 | |
15 | 13, 14 | syl6eqr 2516 | . 2 |
16 | fvex 5881 | . . . 4 | |
17 | eqid 2457 | . . . 4 | |
18 | 16, 17 | fnmpti 5714 | . . 3 |
19 | fneq1 5674 | . . 3 | |
20 | 18, 19 | mpbiri 233 | . 2 |
21 | 15, 20 | impbii 188 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 /\ wa 369
= wceq 1395 e. wcel 1818 class class class wbr 4452
{ copab 4509 e. cmpt 4510
Rel wrel 5009
Fn wfn 5588 ` cfv 5593 |
This theorem is referenced by: fnrnfv 5919 feqmptd 5926 dffn5f 5928 eqfnfv 5981 fndmin 5994 fcompt 6067 resfunexg 6137 eufnfv 6146 nvocnv 6187 fnov 6410 offveqb 6562 caofinvl 6567 oprabco 6884 df1st2 6886 df2nd2 6887 curry1 6892 curry2 6895 resixpfo 7527 pw2f1olem 7641 marypha2lem3 7917 seqof 12164 prmrec 14440 prdsbascl 14880 xpsaddlem 14972 xpsvsca 14976 oppccatid 15114 fuclid 15335 fucrid 15336 curfuncf 15507 yonedainv 15550 yonffthlem 15551 prdsidlem 15952 pws0g 15956 prdsinvlem 16178 gsummptmhm 16963 staffn 17498 prdslmodd 17615 ofco2 18953 1mavmul 19050 cnmpt1st 20169 cnmpt2nd 20170 ptunhmeo 20309 xpsxmetlem 20882 xpsmet 20885 itg2split 22156 pserulm 22817 pserdvlem2 22823 logcn 23028 emcllem5 23329 fcomptf 27503 pl1cn 27937 esumpcvgval 28084 eulerpartgbij 28311 dstfrvclim1 28416 gamcvg2lem 28601 ptpcon 28678 ovoliunnfl 30056 voliunnfl 30058 dvtanlem 30064 fnopabco 30213 upixp 30220 prdsbnd 30289 prdstotbnd 30290 prdsbnd2 30291 fgraphopab 31170 expgrowthi 31238 expgrowth 31240 uzmptshftfval 31251 dvcosre 31706 fourierdlem56 31945 fourierdlem62 31951 fdmdifeqresdif 32931 offvalfv 32932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-iota 5556 df-fun 5595 df-fn 5596 df-fv 5601 |
Copyright terms: Public domain | W3C validator |