MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffun6 Unicode version

Theorem dffun6 5608
Description: Alternate definition of a function using "at most one" notation. (Contributed by NM, 9-Mar-1995.)
Assertion
Ref Expression
dffun6
Distinct variable group:   , ,

Proof of Theorem dffun6
StepHypRef Expression
1 nfcv 2619 . 2
2 nfcv 2619 . 2
31, 2dffun6f 5607 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  /\wa 369  A.wal 1393  E*wmo 2283   class class class wbr 4452  Relwrel 5009  Funwfun 5587
This theorem is referenced by:  funmo  5609  dffun7  5619  fununfun  5637  funcnvsn  5638  funcnv2  5652  svrelfun  5656  fnres  5702  nfunsn  5902  dff3  6044  brdom3  8927  nqerf  9329  shftfn  12906  cnextfun  20564  perfdvf  22307  taylf  22756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-br 4453  df-opab 4511  df-id 4800  df-cnv 5012  df-co 5013  df-fun 5595
  Copyright terms: Public domain W3C validator