![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > dffun7 | Unicode version |
Description: Alternate definition of a function. One possibility for the definition of a function in [Enderton] p. 42. (Enderton's definition is ambiguous because "there is only one" could mean either "there is at most one" or "there is exactly one." However, dffun8 5620 shows that it doesn't matter which meaning we pick.) (Contributed by NM, 4-Nov-2002.) |
Ref | Expression |
---|---|
dffun7 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffun6 5608 | . 2 | |
2 | moabs 2315 | . . . . . 6 | |
3 | vex 3112 | . . . . . . . 8 | |
4 | 3 | eldm 5205 | . . . . . . 7 |
5 | 4 | imbi1i 325 | . . . . . 6 |
6 | 2, 5 | bitr4i 252 | . . . . 5 |
7 | 6 | albii 1640 | . . . 4 |
8 | df-ral 2812 | . . . 4 | |
9 | 7, 8 | bitr4i 252 | . . 3 |
10 | 9 | anbi2i 694 | . 2 |
11 | 1, 10 | bitri 249 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 E. wex 1612
e. wcel 1818 E* wmo 2283 A. wral 2807
class class class wbr 4452 dom cdm 5004
Rel wrel 5009
Fun wfun 5587 |
This theorem is referenced by: dffun8 5620 dffun9 5621 brdom5 8928 imasaddfnlem 14925 imasvscafn 14934 funressnfv 32213 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-opab 4511 df-id 4800 df-cnv 5012 df-co 5013 df-dm 5014 df-fun 5595 |
Copyright terms: Public domain | W3C validator |