![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > dfid3 | Unicode version |
Description: A stronger version of df-id 4800 that doesn't require and to be distinct. Ordinarily, we wouldn't use this as a definition, since non-distinct dummy variables would make soundness verification more difficult (as the proof here shows). The proof can be instructive in showing how distinct variable requirements may be eliminated, a task that is not necessarily obvious. (Contributed by NM, 5-Feb-2008.) (Revised by Mario Carneiro, 18-Nov-2016.) |
Ref | Expression |
---|---|
dfid3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-id 4800 | . 2 | |
2 | ancom 450 | . . . . . . . . . . 11 | |
3 | equcom 1794 | . . . . . . . . . . . 12 | |
4 | 3 | anbi1i 695 | . . . . . . . . . . 11 |
5 | 2, 4 | bitri 249 | . . . . . . . . . 10 |
6 | 5 | exbii 1667 | . . . . . . . . 9 |
7 | vex 3112 | . . . . . . . . . 10 | |
8 | opeq2 4218 | . . . . . . . . . . 11 | |
9 | 8 | eqeq2d 2471 | . . . . . . . . . 10 |
10 | 7, 9 | ceqsexv 3146 | . . . . . . . . 9 |
11 | equid 1791 | . . . . . . . . . 10 | |
12 | 11 | biantru 505 | . . . . . . . . 9 |
13 | 6, 10, 12 | 3bitri 271 | . . . . . . . 8 |
14 | 13 | exbii 1667 | . . . . . . 7 |
15 | nfe1 1840 | . . . . . . . 8 | |
16 | 15 | 19.9 1893 | . . . . . . 7 |
17 | 14, 16 | bitr4i 252 | . . . . . 6 |
18 | opeq2 4218 | . . . . . . . . . . 11 | |
19 | 18 | eqeq2d 2471 | . . . . . . . . . 10 |
20 | equequ2 1799 | . . . . . . . . . 10 | |
21 | 19, 20 | anbi12d 710 | . . . . . . . . 9 |
22 | 21 | sps 1865 | . . . . . . . 8 |
23 | 22 | drex1 2069 | . . . . . . 7 |
24 | 23 | drex2 2070 | . . . . . 6 |
25 | 17, 24 | syl5bb 257 | . . . . 5 |
26 | nfnae 2058 | . . . . . 6 | |
27 | nfnae 2058 | . . . . . . 7 | |
28 | nfcvd 2620 | . . . . . . . . 9 | |
29 | nfcvf2 2645 | . . . . . . . . . 10 | |
30 | nfcvd 2620 | . . . . . . . . . 10 | |
31 | 29, 30 | nfopd 4234 | . . . . . . . . 9 |
32 | 28, 31 | nfeqd 2626 | . . . . . . . 8 |
33 | 29, 30 | nfeqd 2626 | . . . . . . . 8 |
34 | 32, 33 | nfand 1925 | . . . . . . 7 |
35 | opeq2 4218 | . . . . . . . . . 10 | |
36 | 35 | eqeq2d 2471 | . . . . . . . . 9 |
37 | equequ2 1799 | . . . . . . . . 9 | |
38 | 36, 37 | anbi12d 710 | . . . . . . . 8 |
39 | 38 | a1i 11 | . . . . . . 7 |
40 | 27, 34, 39 | cbvexd 2026 | . . . . . 6 |
41 | 26, 40 | exbid 1886 | . . . . 5 |
42 | 25, 41 | pm2.61i 164 | . . . 4 |
43 | 42 | abbii 2591 | . . 3 |
44 | df-opab 4511 | . . 3 | |
45 | df-opab 4511 | . . 3 | |
46 | 43, 44, 45 | 3eqtr4i 2496 | . 2 |
47 | 1, 46 | eqtri 2486 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 A. wal 1393
= wceq 1395 E. wex 1612 { cab 2442
<. cop 4035 { copab 4509 cid 4795 |
This theorem is referenced by: dfid2 4802 reli 5135 opabresid 5332 ider 7364 cnmptid 20162 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-opab 4511 df-id 4800 |
Copyright terms: Public domain | W3C validator |