![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > dfif4 | Unicode version |
Description: Alternate definition of the conditional operator df-if 3942. Note that is independent of i.e. a constant true or false. (Contributed by NM, 25-Aug-2013.) |
Ref | Expression |
---|---|
dfif3.1 |
Ref | Expression |
---|---|
dfif4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfif3.1 | . . 3 | |
2 | 1 | dfif3 3955 | . 2 |
3 | undir 3746 | . 2 | |
4 | undi 3744 | . . . 4 | |
5 | undi 3744 | . . . . 5 | |
6 | uncom 3647 | . . . . . 6 | |
7 | unvdif 3902 | . . . . . 6 | |
8 | 6, 7 | ineq12i 3697 | . . . . 5 |
9 | inv1 3812 | . . . . 5 | |
10 | 5, 8, 9 | 3eqtri 2490 | . . . 4 |
11 | 4, 10 | ineq12i 3697 | . . 3 |
12 | inass 3707 | . . 3 | |
13 | 11, 12 | eqtri 2486 | . 2 |
14 | 2, 3, 13 | 3eqtri 2490 | 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1395 { cab 2442
cvv 3109
\ cdif 3472 u. cun 3473 i^i cin 3474
if cif 3941 |
This theorem is referenced by: dfif5 3957 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 |
Copyright terms: Public domain | W3C validator |