MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfifp2 Unicode version

Theorem dfifp2 1382
Description: Alternate definition of the conditional operator for propositions. (Contributed by BJ, 22-Jun-2019.)
Assertion
Ref Expression
dfifp2

Proof of Theorem dfifp2
StepHypRef Expression
1 df-ifp 1381 . 2
2 cases2 971 . 2
31, 2bitri 249 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  <->wb 184  \/wo 368  /\wa 369  if-wif 1380
This theorem is referenced by:  dfifp3  1383  dfifp5  1385  ifptru  1388  ifpfal  1389  ifpn  1391  bj-ifbi1  37699  bj-ifbi2  37700  bj-ifbi3  37701  bj-ifbi12  37702  bj-ifbi13  37703  bj-ifbi23  37704  bj-ifbi123  37705  bj-ifimimb  37715  bj-ifbibib  37721  bj-ifororb  37726  frege54cor0a  37890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-ifp 1381
  Copyright terms: Public domain W3C validator