MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfifp3 Unicode version

Theorem dfifp3 1383
Description: Alternate definition of the conditional operator for propositions. (Contributed by BJ, 30-Sep-2019.)
Assertion
Ref Expression
dfifp3

Proof of Theorem dfifp3
StepHypRef Expression
1 dfifp2 1382 . 2
2 pm4.64 372 . . 3
32anbi2i 694 . 2
41, 3bitri 249 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  <->wb 184  \/wo 368  /\wa 369  if-wif 1380
This theorem is referenced by:  dfifp4  1384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-ifp 1381
  Copyright terms: Public domain W3C validator