MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfifp4 Unicode version

Theorem dfifp4 1384
Description: Alternate definition of the conditional operator for propositions. (Contributed by BJ, 30-Sep-2019.)
Assertion
Ref Expression
dfifp4

Proof of Theorem dfifp4
StepHypRef Expression
1 dfifp3 1383 . 2
2 imor 412 . . 3
32anbi1i 695 . 2
41, 3bitri 249 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  <->wb 184  \/wo 368  /\wa 369  if-wif 1380
This theorem is referenced by:  anifp  34158  bj-ifim123g  37706  bj-ifidg  37707  bj-ifid2  37711  bj-ifim1  37712  bj-ifim2  37713  bj-ifimim  37716  bj-ifnot  37717  bj-ifnot23  37718  bj-ifdfor  37722  bj-ifdfor2  37723  bj-ifan123g  37728  bj-ifan23  37729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-ifp 1381
  Copyright terms: Public domain W3C validator