MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfifp6 Unicode version

Theorem dfifp6 1386
Description: Alternate definition of the conditional operator for propositions. (Contributed by BJ, 2-Oct-2019.)
Assertion
Ref Expression
dfifp6

Proof of Theorem dfifp6
StepHypRef Expression
1 df-ifp 1381 . 2
2 ancom 450 . . . 4
3 annim 425 . . . 4
42, 3bitri 249 . . 3
54orbi2i 519 . 2
61, 5bitri 249 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  <->wb 184  \/wo 368  /\wa 369  if-wif 1380
This theorem is referenced by:  dfifp7  1387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-ifp 1381
  Copyright terms: Public domain W3C validator