![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > dfiin2 | Unicode version |
Description: Alternate definition of indexed intersection when is a set. Definition 15(b) of [Suppes] p. 44. (Contributed by NM, 28-Jun-1998.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
dfiun2.1 |
Ref | Expression |
---|---|
dfiin2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfiin2g 4363 | . 2 | |
2 | dfiun2.1 | . . 3 | |
3 | 2 | a1i 11 | . 2 |
4 | 1, 3 | mprg 2820 | 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1395 e. wcel 1818
{ cab 2442 E. wrex 2808 cvv 3109
|^| cint 4286
|^|_ ciin 4331 |
This theorem is referenced by: fniinfv 5932 scott0 8325 cfval2 8661 cflim3 8663 cflim2 8664 cfss 8666 hauscmplem 19906 ptbasfi 20082 dihglblem5 37025 dihglb2 37069 intima0 37767 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-v 3111 df-int 4287 df-iin 4333 |
Copyright terms: Public domain | W3C validator |