![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > dfiin2g | Unicode version |
Description: Alternate definition of indexed intersection when is a set. (Contributed by Jeff Hankins, 27-Aug-2009.) |
Ref | Expression |
---|---|
dfiin2g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2812 | . . . 4 | |
2 | df-ral 2812 | . . . . . 6 | |
3 | eleq2 2530 | . . . . . . . . . . . . 13 | |
4 | 3 | biimprcd 225 | . . . . . . . . . . . 12 |
5 | 4 | alrimiv 1719 | . . . . . . . . . . 11 |
6 | eqid 2457 | . . . . . . . . . . . 12 | |
7 | eqeq1 2461 | . . . . . . . . . . . . . 14 | |
8 | 7, 3 | imbi12d 320 | . . . . . . . . . . . . 13 |
9 | 8 | spcgv 3194 | . . . . . . . . . . . 12 |
10 | 6, 9 | mpii 43 | . . . . . . . . . . 11 |
11 | 5, 10 | impbid2 204 | . . . . . . . . . 10 |
12 | 11 | imim2i 14 | . . . . . . . . 9 |
13 | 12 | pm5.74d 247 | . . . . . . . 8 |
14 | 13 | alimi 1633 | . . . . . . 7 |
15 | albi 1639 | . . . . . . 7 | |
16 | 14, 15 | syl 16 | . . . . . 6 |
17 | 2, 16 | sylbi 195 | . . . . 5 |
18 | df-ral 2812 | . . . . . . . 8 | |
19 | 18 | albii 1640 | . . . . . . 7 |
20 | alcom 1845 | . . . . . . 7 | |
21 | 19, 20 | bitr4i 252 | . . . . . 6 |
22 | r19.23v 2937 | . . . . . . . 8 | |
23 | vex 3112 | . . . . . . . . . 10 | |
24 | eqeq1 2461 | . . . . . . . . . . 11 | |
25 | 24 | rexbidv 2968 | . . . . . . . . . 10 |
26 | 23, 25 | elab 3246 | . . . . . . . . 9 |
27 | 26 | imbi1i 325 | . . . . . . . 8 |
28 | 22, 27 | bitr4i 252 | . . . . . . 7 |
29 | 28 | albii 1640 | . . . . . 6 |
30 | 19.21v 1729 | . . . . . . 7 | |
31 | 30 | albii 1640 | . . . . . 6 |
32 | 21, 29, 31 | 3bitr3ri 276 | . . . . 5 |
33 | 17, 32 | syl6bb 261 | . . . 4 |
34 | 1, 33 | syl5bb 257 | . . 3 |
35 | 34 | abbidv 2593 | . 2 |
36 | df-iin 4333 | . 2 | |
37 | df-int 4287 | . 2 | |
38 | 35, 36, 37 | 3eqtr4g 2523 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
A. wal 1393 = wceq 1395 e. wcel 1818
{ cab 2442 A. wral 2807 E. wrex 2808
|^| cint 4286
|^|_ ciin 4331 |
This theorem is referenced by: dfiin2 4365 iinexg 4612 dfiin3g 5261 iinfi 7897 mreiincl 14993 iinopn 19411 clsval2 19551 alexsublem 20544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-v 3111 df-int 4287 df-iin 4333 |
Copyright terms: Public domain | W3C validator |