![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > dfin2 | Unicode version |
Description: An alternate definition of the intersection of two classes in terms of class difference, requiring no dummy variables. See comments under dfun2 3732. Another version is given by dfin4 3737. (Contributed by NM, 10-Jun-2004.) |
Ref | Expression |
---|---|
dfin2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3112 | . . . . . 6 | |
2 | eldif 3485 | . . . . . 6 | |
3 | 1, 2 | mpbiran 918 | . . . . 5 |
4 | 3 | con2bii 332 | . . . 4 |
5 | 4 | anbi2i 694 | . . 3 |
6 | eldif 3485 | . . 3 | |
7 | 5, 6 | bitr4i 252 | . 2 |
8 | 7 | ineqri 3691 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 /\ wa 369
= wceq 1395 e. wcel 1818 cvv 3109
\ cdif 3472 i^i cin 3474 |
This theorem is referenced by: dfun3 3735 dfin3 3736 invdif 3738 difundi 3749 difindi 3751 difdif2 3754 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-dif 3478 df-in 3482 |
Copyright terms: Public domain | W3C validator |