![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > dfin3 | Unicode version |
Description: Intersection defined in terms of union (De Morgan's law). Similar to Exercise 4.10(n) of [Mendelson] p. 231. (Contributed by NM, 8-Jan-2002.) |
Ref | Expression |
---|---|
dfin3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ddif 3635 | . 2 | |
2 | dfun2 3732 | . . . 4 | |
3 | ddif 3635 | . . . . . 6 | |
4 | 3 | difeq1i 3617 | . . . . 5 |
5 | 4 | difeq2i 3618 | . . . 4 |
6 | 2, 5 | eqtri 2486 | . . 3 |
7 | 6 | difeq2i 3618 | . 2 |
8 | dfin2 3733 | . 2 | |
9 | 1, 7, 8 | 3eqtr4ri 2497 | 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1395 cvv 3109
\ cdif 3472 u. cun 3473 i^i cin 3474 |
This theorem is referenced by: difindi 3751 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 |
Copyright terms: Public domain | W3C validator |